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1 Introduction :

The Mexican IPS Array design comprises of 16 nos. of full wavelength dipoles connected in
parallel to a two-wire transmission line by a 1 A length of similar trans.line. The trans.line is
of characteristic impedance of 413 Q and the two-wires are un-guarded (i.e. not insulated by
a dielectric). First measurements of the dipole tuning showed that while all the dipoles tune
at 138 MHz (with 1 MHz. deviation), the trans.line at each dipole transformed the tuning to
107 MHz. Hence at the balun end, the dominant 107-109 MHz tuning prevails throughout.

In order to bring back the 138 MHz tuning at the balun port, two solutions exist:

e Estimate the correct length of the 1 A trans.line where the dipole’s impedance is simply
transformed (no addition or deletion of reactance and hence frequency-independent be-
haviour of the whole dipole + trans.line ...)

e Incorporate a 'lumped’ reactance at the balun to tune-out the un-desired reactances
introduced by the 1 A trans.line.

Since the Mexican Array is in advanced stage of construction, the first solution is not
cost-effective and demands more man-hours too. The obvious choice is the second one and
this note describes the methodology of finding a suitable "Matching Network’ for the array.
The network will invariably be a passive one and has to be housed inside the balun-enclosure.

2 Matching Network :

The starting point of designing the network is to get an idea of typical dipole impedance at
the interface point of the dipole and 1 A trans.line. Literature yields abundant data based on



measurements, ' or on computational models. We set out by measuring the dipole impdeances
on a Network Analyser.

Typical R and X of dipoles spanning from Row 1 to Row 6 of the array were measured at the
four balun-ports. Table 1 gives the measured R and X of the Mexican array.

Table-1
Network Analyser -- HP 8751A ; All values are in ().

Dipole Balun-1 Balun-2 Balun-3 Balun-4
Row R X R X R X R X
378 | -5.7 (339 |-11.3 | 314 | -11.6 | 33.7 | - 9.6
342 | -83 | 33.8|-11.6 | 27.2 | -11.6 | 36.7 | -11.2
295 | -86 | 31.1 | -45 | 344 | -80 | 284 |-14.6
319 | -13.8 | 32.1 | -11.1 | 32.8 | - 9.3 | 37.6 | - 6.6
34.3 | -14.0 | 31.1 | - 6.8 | 26.4 | -11.7 | 34.6 | - 8.7
222 | -16.8 | 28,5 | -6.9 | 29.1 | -4.6 | 32.3 | -16.5
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The average of this 24 sets was taken as the the typical dipole impedance. Deviations from
the average do not have significant effect on the Matching Network’s parameters, as shown in
Appendix A.

As seen in Table 1, the dipoles plus the trans.line shows capacitive reactance everywhere. An
inductance in series could be easily seen as the solution, but it is not so. The network design
is decided principally by the location of the R and X of dipole + trans.line on a Smith’s chart.
This is discussed in length at the Ref.shown 2. Certain types of networks alone will match
the requirement.

2.1 Computation :

Based on Fig.16(c)-[pp.6-15] of the ARRL ref., the network is a series inductance and a shunt-
capacitance, for the case of our R and X. Let Z; be the dipole + trans.line impedance. Since
the inductance Ly is in series with Z,;, let Z; be,

Zs = Zq+ 7y
= Zg+2nf-Ly (1)

'Brown,G.H,Woodward.,0.M Experimentally Determined Impedance Characteristics of
Cylindrical Antennas, Proc. IRE, Vo0l.33,1945, pp.257 262.
2The ARRL UHF/Microwave Experimenter's Manual- Antennas,Components and Design. Publ.by ARRL,1990
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Fig.1  Matching Network .

As shown in Fig.1, the Z; and the capacitance are in shunt; the Z; is the desired impedance
at the balun-port, viz., a normalised impedance of 1.0 + 0j. By the admittance property,

Ys + Yo =10 2)

where,

Zc

1

Y e] )

If Z; is expressed as (Ry — jXg4) for this case,( -ve for capacitive reactance) then Zg becomes,

Zs = Rd + 7(f - Xd)a (4)

where,
t is the reactance of the inductor Ly, viz., t = 27 f-L;.



Now ys becomes,
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where,
N = R>+ X2 — 2X 4t + 1° (6)
Inserting the relevant expressions in Eq.(2),
LRe gt X))+l =10+0 (7)
N d — J\U d s — 4 75

where s is the reactance of the capacitor Cy, viz.,

1

s = 8
Y} ®)
Equating the real parts first,
N = Ry (9)
ie.,
Ri>+ X4* —2Xgt +1> — Ry =0 (10)
Rearranging the terms,
t? —2Xgt+R*>+ X4° — Ry =0 (11)

The above one is a quardratic eqn. in ¢, and can be solved easily. The two roots of ¢ obtained
from this should be examined in conjunction with the following steps :
Equating the imaginary parts next,

BBy log (12)

ie.,

$(Xq —t)+ Ra> + X4 — 2X 4t + 12
t2 —t(s +2X,) + R> + X% + sX,
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From Eq.(11),it can be seen that,

t2 —2X 4t + Ry* + X2 = Ry (14)
Hence, the Eq.(13) reduces to

—st+sXg+R;=0
- Xy

S

(15)

If ¢ has real roots, the above eqn. yields the corresponding s. Putting back the corresponding
t and s in the admittance relation, Eq.(2) again, can make the right choice of the solution.
Once t and s are known, it is easy to calculate the L; and C}.

In case Eq.(11) does not yield real roots,the computation steps are slightly different:
Consider Eq.(13); it is again a quadratic in ¢ and it will have real solutions only when,

(s +2X4)? > 4-(Rs* + X4° + 5Xy) (16)

For equality relation, the above quadartic expression in s can be solved and presume a little
higher( at the second decimal level...) value for further computation. The following section
illustrates the nuances of such selection. Once s is known, ¢ can be solved from Eq.(13).

2.2 Example :
Let Ry = 0.64 and Xy = —0.2. (normalized to 50 2). Then Eq.(11) becomes,

t2 — 0.4t — 0.1904 = 0 (17)

An examination of the coefficients of the above reveals that the equation does not have any
real roots.
Next,substituting the Ry, X, in Eq.(13),

t? —t(s +0.4) +0.4496 + 0.2s = 0 (18)

This quadratic in ¢ will have real roots only if|

(5 +0.4)%>(0.85 4 1.7984) (19)

or, s>1.28.
Let us choose a value of s as 1.3. Then Eqn.(18) becomes

t2 — 1.7t +0.7096 = 0 (20)



Solving, ¢ = 0.9636 or ¢ = 0.73642 To choose among these two roots, put them back in Eq.(3)
along with s = 1.3 and check the result :

1
(0.64 — 0.25 + 0.73642;)
(0.64 — 0.536425)

J
Ys + Yo + 13

_ 76927

0.69735 +0.7692
— 0.917765 — 0.7692] + 0.7692]
—  0.917765.

The result is closer to 1.0 4+ 07 for the chosen ¢; the other root does not satisfy this relation.
From ¢ and s, the corresponding inductance and capacitance values are calculated; L, = 42.47
nH and C; =17.74 pF.

The arbitrary selection of s based on the condition shown in Eq.(16) should be closed by
finding the (ys + yc) or yo value; i.e. for the chosen value of s the above expression should be
unity. To illustrate this case consider the following Ry and X4 values:

R; =0.846 and X, = 0.038

Going through the above steps, the condition of s to satisfy,viz., Eq.() yields s > 1.694. The
corresponding ¢ is 0.84397 and the yq is 0.6197. Incrementing the s in steps of 0.1 to 0.2 and
re-working the computations, yields the following table:

s t Yo
1.694 | 0.84397 | 0.6197
1.70 | 0.80574 | 0.6483
1.90 | 0.55593 | 0.8599
2.10 | 0.46620 | 0.9410
2.30 | 0.40916 | 0.9913

Hence the final choice is the last row of the above Table as yq is closer to unity for the given
R; and X, values.
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Appendix —A
Deviations from the average - its’ effect on the Matching elements

The computation of the Matching Network was done above for an average value of R; of 0.64
and X4 of -0.2. A relook at Table 1 with the normalized values shows the following :

Row Balun-1 Balun-2 Balun-3 Balun4
3 (0.59 - 0.172j) (0.622 - 0.09j) (0.688 - 0.16j) | (0.568 - 0.292))
4 (0.632 - 0.276j) | (0.642 - 0.222j) | (0.656 - 0.186j) | (0.752 - 0.132j)
5 (0.686 - 0.28j) | (0.622 - 0.138j) | (0.528 - 0.234j) | (0.692 - 0.174j)

For example, let us consider two cases,viz., 4th Row — balun 1 and — balun 4. This was chosen
since the 4th Row’s balun 2 and 3 values are the closest to the average of the ensemble. Balun
1 value of the same row shows a marked deviation in the reactance part alone, while that of
balun 4 exhibits a large deviation in the resistive part.

Case - (i):

The values are: Ry = 0.632 ; X; = - 0.276. Going through Eqns.(13) to (16), and solving
the quadratics of s and ¢, we get s = 1.27 and ¢+ = 0.8468. The corresponding elements are
: C; = 18.16 pF and L; = 48.83 nH.

Case - (ii):

Here,R; = 0.752 ; X; = - 0.132. Again through the same steps of solving s and ¢, we get
s = 1.51 and £ = 0.8198.

and

C1 = 15.27 pF and L; = 47.27 nH.

Comparison with the elements computed for the average Ry, Xy viz., 17.74 pF and 42.47 nH
values, shows that there is no appreciable deviations in them; a single network should suffice
to match all the baluns and rows in question, which must be verified experimentally too.
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